On a New Multiple Critical Point Theorem and Some Applications to Anisotropic Problems
نویسنده
چکیده
Using the Fenchel-Young duality and mountain pass geometry we derive a new multiple critical point theorem. In a finite dimensional setting it becomes three critical point theorem while in an infinite dimensional case we obtain the existence of at least two critical points. The applications to anisotropic problems show that one can obtain easily that all critical points are nontrivial.
منابع مشابه
Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces
In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.
متن کاملA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کاملA new characterization for Meir-Keeler condensing operators and its applications
Darbo's fixed point theorem and its generalizations play a crucial role in the existence of solutions in integral equations. Meir-Keeler condensing operators is a generalization of Darbo's fixed point theorem and most of other generalizations are a special case of this result. In recent years, some authors applied these generalizations to solve several special integral equations and some of the...
متن کاملSimultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملSeveral new results based on the study of distance measures of intuitionistic fuzzy sets
It is doubtless that intuitionistic fuzzy set (IFS) theory plays an increasingly important role in solving the problems under uncertain situation. As one of the most critical members in the theory, distance measure is widely used in many aspects. Nevertheless, it is a pity that part of the existing distance measures has some drawbacks in practical significance and accuracy. To make up for their...
متن کامل